一百一十二學年度第一學期微積分會考試題

一，單選擇題（單選十題，每題五分，共五十分，答錯不倒扣）

1．Let $f(x)=\int_{0}^{x^{2}} \frac{\sin (t)}{(t+1)^{2}} d t$ ．Evaluate $\lim _{x \rightarrow \infty} f^{\prime}(x)=$
（A） 2 ；
（B） 1 ；
（C） 0 ；
（D）None of the above．

2．Evaluate $\lim _{x \rightarrow 0} \frac{\csc (x)-\cot (x)}{x}$
（A） 0 ；
（B） 1 ；
（C）∞ ；
（D）None of the above．

3．Let $f(x)=\frac{1}{4} x^{3}+x-1$ ．Find $\left(f^{-1}\right)^{\prime}(3)$ ．
（A） 1 ；
（B）$\frac{1}{2}$ ；
（C）$\frac{1}{4}$ ；
（D）None of the above．

4．The integral $\int_{1}^{9} \frac{1}{\sqrt{x}(1+\sqrt{x})^{2}} d x=$
（A） 2 ；
（B）$\frac{1}{2}$ ；
（C）$\frac{1}{4}$ ；
（D）None of the above．

5．Consider $f(x)=\frac{1-\cos (x)}{x^{2}}$ with $x \neq 0$ ．Which of the following statements is true？
（A）$f(x) \in\left[0, \frac{1}{2}\right)$ ；
（B）$f(x)$ is a inflection point at $x=1$ ；
（C）$f(x)$ has exactly one root；
（D）$f(x)$ has a slant asymptote $y=x$ ．

6．Evaluate $\lim _{\mathrm{n} \rightarrow \infty} \frac{1}{n^{3}}\left(1^{2}+2^{2}+\cdots+n^{2}\right)=$
（A）$\frac{1}{3}$ ；
（B）$\frac{1}{6}$ ；
（C） 0 ；
（D）∞ ．

7．Let $\mathrm{G}(x)=\int_{0}^{x}\left[\mathrm{~s} \int_{0}^{s} \frac{1}{t^{2}+t+2} \mathrm{dt}\right] \mathrm{ds}$ ，find $G^{\prime \prime}(0)=$
（A）-1 ；
（B） 1 ；
（C）$\sqrt{2}$ ；
（D）None of the above．

8．On what interval is the curve $f(x)=2 x^{5 / 3}-5 x^{4 / 3}$ concave upward？
（A）$(0,1)$ ；
（B）$(1, \infty)$ ；
（C）$(-\infty, 0)$ ；
（D）$(-\infty,-1)$ ．

9．Find the equation of the tangent line to the curve $y=e^{\left(-2 x+x^{2}\right)}$ at $x=2$ ．
（A）$y=-x+3$ ；
（B）$y=3 x-5$ ；
（C）$y=x-1$ ；
（D）$y=2 x-3$ ．

10．Find the slope of the graph of $3\left(x^{2}+y^{2}\right)^{2}=100 x y$ at the point $(3,1)$ ．
（A）$\frac{13}{9}$ ；
（B）$\frac{61}{45}$ ；
（C）$\frac{-61}{45}$ ；
（D）$\frac{2}{9}$ ．

二，多選擇題（多選五題，每題六分，共三十分。答錯一個選項扣三分，錯兩個選項以上不給分，分數不倒扣）

11．Which of the following statements are not true ？
（A）If $\lim _{x \rightarrow \mathrm{a}^{+}} f(x)=\lim _{x \rightarrow \mathrm{a}^{-}} f(x)=L$ ，then f is continuous at $x=a$ ；
（B）If a function is continuous on a closed interval，then it must have a minimum on the interval；
（C）If y is a differentiable function of u ，and u is a differentiable function of x ， then y is a differentiable function of x ；
（D）If f has an inverse function，then $\left(f^{-1}\right)^{-1}=f$ and $f^{-1}=\frac{1}{f}$ ．

12．Which of the following statements are true ？
（A）If $f(1)=1$ and $3 \geq f^{\prime}(x)$ for all x ，then $\mathrm{f}(5) \leq 13$ ；
（B）If f is continuous on $[0,1]$ ，then $\int_{0}^{1}[f(x)+f(1-x)] d x=0$ ；
（C）If $f(a)<k<f(b)$ with $a<b$ ，then there is at least one number c in $[a, b]$ such that $f(c)=k$ ；
（D）$\frac{d}{d x}\left[\int_{u(x)}^{v(x)} f(t) d t\right]=f(x) v^{\prime}(x)-f(x) u^{\prime}(x)$ ．

13．Which of the following statements are not true？
（A）If f is differentiable at a ，so is $|f|^{2}$ ；
（B）If $x=a$ is a critical point of $y=f(x)$ ，then f has a minimum at $x=a$ ；
（C）If f is differentiable at a ，then f is continuous at a ；
（D）If f is differentiable at a ，then $f^{\prime}(a)=\lim _{x \rightarrow \mathrm{a}} f^{\prime}(x)$ ；

14．Suppose that $f^{\prime}(a)=1$ for some constant a ．The possible values for the limit $\lim _{x \rightarrow \mathrm{a}} \frac{f(x)-f(a)}{e^{x}-1}$ are
（A） 1 ；
（B）e ；
（C）e^{-1} ；
（D） 0 ．

15．Consider

$$
f(x)=\left\{\begin{array}{cl}
1, & \text { if } x=0 \\
\frac{\sin (x)}{x}, & \text { if } x \neq 0
\end{array}\right.
$$

Which of the following statements are true？
（A）$f(x)$ is differentiable at $x=0$ ；
（B）$f(x)$ is continuous at $x=0$ ；
（C）$f(x)$ has a global maximum value；
（D）$f(x)$ has an inflection point．

三，填空題（五題，每題四分，共二十分，答錯不倒扣）

1．For what value of c does the polynomial $P(x)=x^{4}+c x^{3}+x^{2}$ have two inflection points？ \qquad （1）
2．Solve the equation $\ln (x)+\ln (x-1)=1 . x=$ \qquad ．
3．The integral $\int_{1}^{3} \frac{1}{\sqrt{t}(1+t)} d t=$ \qquad （3） ．

4．Let $F(x)=\int_{2}^{x} \sqrt{1+t^{2}}$ dt．Then the derivative $\left(F^{-1}\right)^{\prime}(0)=$ \qquad ．

5．The integral $\int \frac{x}{\sqrt{9+8 x^{2}-x^{4}}} d x=$ \qquad （5） －．

