

Colloquium

Numerical evidence for the $L^{\mathcal{P}}$ -norm blow-up

主講人: **卓建宏** 教授

國立中正大學數學系

時 間: 106年 10月 25日(三) 14:30

地 點:應用數學系多媒體教室(理 408 室)

摘 要:

We consider those evolution equations whose solutions blow up in finite time T in the sense that $\|u(t,\cdot)\|_{\infty}\to\infty$ as $t\to T$. Here, u(t,x) denotes the exact solution of the evolution equation under consideration. Such problems are often called blow-up problems and the finite time is called the blow-up time. Although the L^{∞} -norm for the solutions of such problems becomes unbounded in a finite time T, the L^p -norms $(1 \le p < \infty)$ do not always blow up simultaneously. However, for the numerical computation of blow-up problems, if we consider time-independent spatial partitions for a bounded domain to compute blow-up solutions, the unboundedness for the discrete L^{∞} -norm of the numerical solution is equivalent to the unboundedness of any other discrete L^p -norms $(1 \leq p < \infty)$ for the numerical solutions. That is, all discrete L^p -norms blow up simultaneously while the L^p -norms of the exact solution may remain bounded as $t \to T$. This shows the numerical difficulty in the computation of L^p -norms of the blow-up solutions which remain bounded as $t \to T$. We would like to explore in this talk such a problem by a simple model equation axisymmetric semi-linear heat equation. Some remarks on the numerical blow-up solutions of axisymmetric semi-linear equation will also be reported.