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Results 

Problem description 

Abstract

In recent years, lithium-ion batteries (LIB) have been widely used in electric vehicles, consumer electronics, and stationary energy storage systems. Improving safety and high energy

density/performance is the goal pursued by LIB, so the primary goal of improving performance is to change its electrolyte. Unfortunately, the development of new materials has always

been quite time-consuming and cost-consuming, but deep learning (DL) provides a potential solution that can shorten the development cycle and explore new chemical structures. It is not

necessary to repeatedly experiment to obtain new molecules through simulations and experiments. Instead, a large number of novel candidate molecules with predictive properties can be

obtained through the DL model. Since it is difficult to search a large area of ​​chemical space, we need to build a general model to search for the best molecule described by continuous

representation. In addition, deep learning methods are used to construct a polymer electrolyte generation model to facilitate the future design of new polymer electrolytes or materials.
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Figure 1 Workflow for selecting new molecule candidates.

Method

The design of a suitable electrolyte additives for a stable SEI layer is crucial and difficult in LIB,

because they should satisfies the specific conditions of electrochemical properties. In this work, deep

learning(DL) was used to assist the design of electrolyte additives as shown in workflow of figure 1.

The dataset of common additives(111 molecules), QM 9(133274 molecules), Wohlfarth et al. [4]

(784 molecules), and Martin et al. [5] (5445 molecules) are selected as the DL datasets, where they

included electrochemical properties of HOMO, LUMO, bandgap, dipole moment, Dielectric constant

(DC), ionization energy (IP), and electron affinity (EA). In figure 1, variational autoencoder as a

generate model was trained with QM9 dataset, which was employed to produce the new electrolyte

additives with desired properties. PCA analysis was used to characterize the latent space for

visualizing chemical properties and selected the desired property range. In the following, RNN

models were trained with datasets of Wohlfarth et al. [4] and Martin et al. [5] for prediction of DC,

IP, and EA. In order to make sure that the data were close to data of QM9, the data were projected on

the latent space trained with QM9 as shown in figure 4. The final candidates were determined with

the screened condition after the prediction of RNN model as shown in figure 1.
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Traditionally, exploring the new materials and their properties requires to repeat a number of experiments for getting their chemical properties. Although the current methodologies such as

high-throughput computation[1] has been developed for the novel materials screening and exploration, they are still costly and time consuming. Therefore, computational materials experts

have introduced machine learning to accelerate the discovery of new materials recently. In this work, the electrolyte additive is selected as an example to demonstrate the effectiveness of this

model. Variational autoencoder (VAE)[2] and recurrent neural networks(RNN) were employed to assist the design of chemical structure for specific applications, which efficiently generate

the candidates with desired properties.

To find the features of the target molecule, another feature predictor is built in the latent space. The predictor is an ANN

architecture. VAE is trained by 133274 molecules in the QM 9 dataset [3]. The generated model has trained on QM 9 dataset[3]

which contains different databases are related, the model is generated to assist in the design of chemical structure HOMO, LUMO,

bandgap, and dipole moment. In addition, we also use two different databases with 784 features of Dielectric constant (DC) and

5445 features of ionization energy (IP) and electron affinity (EA). We also set up the RNN model to combine these two data The

library is trained through RNN, and the trained molecules through the VAE model, through PCA analysis, to check the versatility

of QM9 and various databases. Finally, we searched 20 potential molecules as candidate in the latent space with the chemical

properties that can stabilize LIB, and Table 2 shows the various properties of the candidates.

Figure 3 The PCA analysis of the latent space, the selected properties in the QM9

data are presented in a two-dimensional mode with their respective PCA analysis.

Figure 2 Relation of chemical properties between the real value of properties from

the QM 9 validation dataset and predicted properties from the VAE model.

Table 1 property prediction results of QM9 and the other dataset. Table 2 The 20 potential chemical structures determined from the screening workflow.

bandgap HOMO LUMO Dipole moment
Dielectric 

Constant
IP EA

PearsonR 0.9821 0.9502 0.9876 0.9430 0.8930 0.8737 0.8101

MAE 0.1962 0.1570 0.1978 0.4153 0.3948 0.3678 0.3487

R2 0.9589 0.8806 0.9601 0.8701 0.7805 0.7609 0.6512
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smiles bandgap HOMO LUMO

Dipole 

Moment

Dielectric 

constant

IP EA

chemical 

hardness

O=CC(=O)C=O 3.2367 -6.972 -3.7017 3.1202 38.312 11.5935 0.6618 5.46585

O=CC(=O)C(=O)CO 3.8061 -6.8563 -3.0099 3.1251 30.3472 11.054 0.6002 5.2269

O=C1COCC(=O)C1=O 3.8751 -6.9164 -2.9901 3.5944 42.7701 10.575 0.7396 4.9177

[NH-]c1nc[cH+]nc(O)n1 4.0476 -6.9718 -2.8409 5.0148 36.3849 7.0077 -2.702 4.85485

Nc1nonnc1=O 3.9978 -6.8631 -2.8123 3.5888 48.557 12.6697 0.7279 5.9709

NC(=O)C(=O)C=O 3.7784 -6.6052 -2.7735 3.0645 40.2403 11.8793 -0.2964 6.08785

O=C1[CH-]C2=CC=CC2N1 3.2125 -6.0226 -2.7706 7.3101 44.422 9.4655 -2.7355 6.1005

COC(=O)C(=O)C=O 4.0775 -6.8429 -2.7313 3.0398 38.0667 11.1648 -0.1542 5.6595

[NH-]C1N=CC=NO1 4.1451 -6.9024 -2.726 3.044 38.5198 8.6224 -2.2891 5.45575

O=C1CCCC(=O)C1=O 4.1071 -6.8899 -2.7012 4.8377 42.0834 10.3533 0.6891 4.8321

O=CC(=O)C(=O)N1CC1 4.2132 -6.9402 -2.695 3.2035 42.5466 10.0775 -0.6088 5.34315

N=C(N)C(=O)C=O 4.0458 -6.8098 -2.6841 4.0772 14.6068 11.448 -0.8138 6.1309

[NH-][CH+]OCC(=O)C=O 4.1929 -6.9033 -2.6804 3.1177 19.5452 9.7328 -1.4855 5.60915

[NH-]C1=NC=C[CH+](C=O)O1 4.1445 -6.8548 -2.6769 3.0552 39.212 9.1977 -2.1783 5.688

CNC(=O)C(=O)C=O 3.8836 -6.6138 -2.6726 3.2299 95.1192 11.6288 -0.7955 6.21215

O=C1CNCC(=O)C1=O 3.9592 -6.6913 -2.6668 3.6193 44.3411 10.7982 -0.2631 5.53065

CNC(=N)C(=O)C#N 4.0393 -6.7318 -2.6401 3.3159 77.8812 11.829 -0.6964 6.2627

O=C1COCC1=O 3.7943 -6.4717 -2.6153 3.12 49.3587 10.3211 -0.4988 5.40995

O=CC1=CC2OC2C1=O 4.2104 -6.8683 -2.607 3.5894 10.3363 10.5864 -0.8819 5.73415

Nc1cnc(=O)on1 4.3241 -6.9613 -2.5978 6.1211 48.9019 10.5188 -1.9318 6.2253

Figure 4 Mapping the datasets of Wohlfarth et al. [4] and Martin et al. [5] on the latent

space of VAE.


