一百一十一學年度第二學期微積分會考試題

(C) ln2;

(D) 2ln2.

一、單選擇題 (單選十題,每題五分,共五十分,答錯不倒扣)

(B) e;

(A) 1;

1. The area of the region bounded by the curves $y = \ln(x)$, y = 0, and x = e is

2.	Evaluate $\lim_{(x,y)\to(0,0)} \frac{\sin(x^2+y^2)}{\sqrt{x^2+y^2}} =$				
	(A) 0;	(B) 1;	(C) 0.5;	(D) not exist.	
3.	Let $f(x, y) = x^2 + xy +$ True ?	y^2 on the unit circle $x^2 +$	$+y^2 = 1$. Which one of the	e following statements is	
	(A) f has an absolute maximum at $(\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$; (C) f has one critical point;		(B) f has an absolute minimum at $(1, 0)$;		
			(D) The maximum value of f is 1.5.		
4.	$Let f(x,y) = 3x^2y + y^3$	$x^3 - 6x^2 - 6y^2 + 2$. How m	any saddle points does f possess?		
	(A) 1;	(B) 2;	(C) 3;	(D) 4.	
5.	Evaluate $\int_{-2}^{2} \frac{1}{x^3} =$				
	(A) 0;	(B) $\frac{3}{8}$;	(C) $\frac{-3}{8}$;	(D) not exist.	
6.	Evaluate $\int_{-7}^{7} \sqrt{49 - x^2} \ dx =$				
	(A) $\frac{49\pi}{4}$;	(B) $\frac{49\pi}{2}$;	(C) 49π ;	(D) 0.	
7.	Find the arc length of the curve $x(t) = a(t - sint)$, $y(t) = a(1 - cost)$ on the interval $[0, 2\pi]$.				
	(A) 2a;	(B) 4a;	(C) 6a;	(D) 8a.	
8.	Evaluate $\int_0^{\pi/4} \tan^4 \theta \ d\theta =$				
	(A) $\frac{1+\pi}{4}$;	(B) $\frac{\pi}{4} - \frac{2}{3}$;	(C) $\frac{\pi}{4} - 1$;	(D) $\frac{\pi}{4} + \frac{1}{3}$.	
9.	Let $w = 2xy$ with $x = s^2 + t^2$ and $y = s/t$. Find $\frac{\partial w}{\partial t} =$				
	(A) $\frac{6s^2+2t^2}{t}$;	(B) $\frac{s^2-2t^2}{st}$;	(C) $\frac{2st^2-2s^3}{t^2}$;	(D) $\frac{2ts^2 + 2st^2}{s}$.	
10.	Find the directional derivation (1,1,1) to (1,5,4).	ative of $h(x, y, z) = \ln(x - \frac{1}{2})$	+2y + 2z) at (1,1,1) in t	the direction from	
	(A) $\frac{3}{5}$;	(B) $\frac{14}{5}$;	(C) $\frac{14}{25}$;	(D) $\frac{6}{25}$.	

二、多選擇題 (多選五題,每題六分,共三十分。答錯一個選項扣三分,錯兩個選項以上不給分,分數不倒扣)
11. Consider the volumes of the solids generated by revolving the region bounded by $y = 0$, $x = 1$, $x = 5$
and $y = \frac{10}{x^2}$ about the given lines. Which of the following statements are True ?
(A) The x-axis. Then volume is $\frac{49}{15\pi}$;
(B) The y-axis. Then volume is $20\pi \ln(5)$;
(C) The line $y = -2$. Then volume is $\frac{1906}{15\pi}$;
(D) The line $y = 0$. Then volume is $\frac{496}{15\pi}$.

12. Let $f(x,y) = \begin{cases} \frac{x\sin(y)}{x^2 + y^2} & \text{if } (x,y) \neq (0,0); \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$ Which of the following statements are **True**?

13. Let function $f(x,y) = \ln(\sqrt{x^2 + y^2})$ and point P = (2,1). Which of the following statements are

(C) 1;

(D) 2.

(B) The directional derivative of f at P in the direction $\langle \frac{3}{5}, \frac{4}{5} \rangle$ is $\frac{2}{5}$;

14. For what values of c does the integral $\int_0^\infty (\frac{1}{\sqrt{x^2+1}} - \frac{c}{x+1}) dx$ converge?

(A) If $f_x(x, y)$ and $f_y(x, y)$ are continuous, then f(x, y) is differentiable;

(B) ln(2);

(C) The minimum rate of change of f at P occurs in the direction $\frac{1}{\sqrt{5}}\langle 2,1\rangle$;

(A) f is continuous at (0,0);

(D) f is differentiable at (0,0).

(A) The gradient of f at P is $\langle \frac{1}{5}, \frac{2}{5} \rangle$;

(D) The maximum rate of change of f at P is $\frac{1}{\sqrt{5}}$.

Which of the following statements are **Not True**?

(B) If f(x, y) is differentiable, then $\nabla f(x, y)$ exists;

(C) If $\nabla f(a,b)$ exists, then f(x,y) is continuous at (a,b);

(D) If f(x, y) is continuous at (0,0), then $\nabla f(0,0)$ exists.

(B) $f_x(0,0) = 0;$ (C) $f_y(0,0) = 0;$

(A) ln(3);

三、填空題 (五題,每題四分,共二十分,答錯不倒扣)

- 1. A right circular cone is generated by revolving the region bounded by y = 0, x = 0, and $y = 4 \frac{4x}{3}$ about y-axis. The lateral surface area of the cone is ____(1)___.
- 2. Let w(x, y, z) satisfy $\cos(xy) + \sin(yz) + zw = 20$. Then $\frac{\partial w}{\partial y} = \underline{\qquad (2) \qquad }$.
- 3. For $u(t) = t^2 \mathbf{i} 2t \mathbf{j} + \mathbf{k}$. Then $\frac{d}{dt} [u(t) \times u'(t)] = \underline{\qquad (3) \qquad }$.
- 4. The absolute maximum value of $f(x,y) = x^2 + 2y^2 2x + 3$ subject to the constraint $x^2 + y^2 \le 10$ is ___(4)__.
- 5. $\int \frac{t^2 t 2}{t^3 2t 4} dt = \underline{(5)}$