一百一十一學年度第二學期微積分會考試題

一，單選擇題（單選十題，每題五分，共五十分，答錯不倒扣）

1．The area of the region bounded by the curves $y=\ln (x), y=0$ ，and $x=e$ is
（A）1；
（B）e ；
（C） $\ln 2$ ；
（D） $2 \ln 2$ ．

2．Evaluate $\lim _{(x, y) \rightarrow(0,0)} \frac{\sin \left(x^{2}+y^{2}\right)}{\sqrt{x^{2}+y^{2}}}=$
（A） 0 ；
（B） 1 ；
（C） 0.5 ；
（D）not exist．

3．Let $f(x, y)=x^{2}+x y+y^{2}$ on the unit circle $x^{2}+y^{2}=1$ ．Which one of the following statements is True？
（A）f has an absolute maximum at $\left(\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ ；
（B）f has an absolute minimum at $(1,0)$ ；
（C）f has one critical point；
（D）The maximum value of f is 1.5 ．

4．Let $f(x, y)=3 x^{2} y+y^{3}-6 x^{2}-6 y^{2}+2$ ．How many saddle points does f possess？
（A） 1 ；
（B）2；
（C）3；
（D） 4 ．

5．Evaluate $\int_{-2}^{2} \frac{1}{x^{3}}=$
（A） 0 ；
（B）$\frac{3}{8}$ ；
（C）$\frac{-3}{8}$ ；
（D）not exist．

6．Evaluate $\int_{-7}^{7} \sqrt{49-x^{2}} d x=$
（A）$\frac{49 \pi}{4}$ ；
（B）$\frac{49 \pi}{2}$ ；
（C） 49π ；
（D） 0 ．

7．Find the arc length of the curve $x(t)=a(t-\sin t), y(t)=a(1-\cos t)$ on the interval $[0,2 \pi]$ ．
（A） $2 a$ ；
（B） $4 a$ ；
（C） $6 a$ ；
（D） $8 a$ ．

8．Evaluate $\int_{0}^{\pi / 4} \tan ^{4} \theta d \theta=$
（A）$\frac{1+\pi}{4}$ ；
（B）$\frac{\pi}{4}-\frac{2}{3}$ ；
（C）$\frac{\pi}{4}-1$ ；
（D）$\frac{\pi}{4}+\frac{1}{3}$ ．

9．Let $w=2 x y$ with $x=s^{2}+t^{2}$ and $y=s / t$ ．Find $\frac{\partial w}{\partial t}=$
（A）$\frac{6 s^{2}+2 t^{2}}{t}$ ；
（B）$\frac{s^{2}-2 t^{2}}{s t}$ ；
（C）$\frac{2 s t^{2}-2 s^{3}}{t^{2}}$ ；
（D）$\frac{2 t s^{2}+2 s t^{2}}{s}$ ．

10．Find the directional derivative of $h(x, y, z)=\ln (x+2 y+2 z)$ at $(1,1,1)$ in the direction from $(1,1,1)$ to $(1,5,4)$ ．
（A）$\frac{3}{5}$ ；
（B）$\frac{14}{5}$ ；
（C）$\frac{14}{25}$ ；
（D）$\frac{6}{25}$ ．

11．Consider the volumes of the solids generated by revolving the region bounded by $y=0, x=1, x=5$ and $y=\frac{10}{x^{2}}$ about the given lines．Which of the following statements are True？
（A）The x－axis．Then volume is $\frac{49}{15 \pi}$ ；
（B）The y－axis．Then volume is $20 \pi \ln (5)$ ；
（C）The line $y=-2$ ．Then volume is $\frac{1906}{15 \pi}$ ；
（D）The line $y=0$ ．Then volume is $\frac{496}{15 \pi}$ ．

12．Let $f(x, y)=\left\{\begin{array}{cl}\frac{x \sin (y)}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) ; \\ 0 & \text { if }(x, y)=(0,0) .\end{array}\right.$ Which of the following statements are True？
（A）f is continuous at $(0,0)$ ；
（B）$f_{x}(0,0)=0$ ；
（C）$f_{y}(0,0)=0$ ；
（D）f is differentiable at $(0,0)$ ．
13．Let function $f(x, y)=\ln \left(\sqrt{x^{2}+y^{2}}\right)$ and point $P=(2,1)$ ．Which of the following statements are True？
（A）The gradient of f at P is $\left\langle\frac{1}{5}, \frac{2}{5}\right\rangle$ ；
（B）The directional derivative of f at P in the direction $\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle$ is $\frac{2}{5}$ ；
（C）The minimum rate of change of f at P occurs in the direction $\frac{1}{\sqrt{5}}\langle 2,1\rangle$ ；
（D）The maximum rate of change of f at P is $\frac{1}{\sqrt{5}}$ ．
14．For what values of c does the integral $\int_{0}^{\infty}\left(\frac{1}{\sqrt{x^{2}+1}}-\frac{c}{x+1}\right) d x$ converge？
（A） $\ln (3)$ ；
（B） $\ln (2)$ ；
（C）1；
（D） 2 ．

15．Which of the following statements are Not True ？
（A）If $f_{x}(x, y)$ and $f_{y}(x, y)$ are continuous，then $f(x, y)$ is differentiable；
（B）If $f(x, y)$ is differentiable，then $\nabla f(x, y)$ exists；
（C）If $\nabla f(a, b)$ exists，then $f(x, y)$ is continuous at (a, b) ；
（D）If $f(x, y)$ is continuous at $(0,0)$ ，then $\nabla f(0,0)$ exists．

三，填空題（五題，每題四分，共二十分，答錯不倒扣）

1．A right circular cone is generated by revolving the region bounded by $y=0, x=0$ ，and $y=4-\frac{4 x}{3}$ about y－axis．The lateral surface area of the cone is \qquad （1）

2．Let $w(x, y, z)$ satisfy $\cos (\mathrm{xy})+\sin (y z)+z w=20$ ．Then $\frac{\partial w}{\partial y}=$ \qquad .

3．For $u(t)=t^{2} \mathbf{i}-2 t \mathbf{j}+\mathbf{k}$ ．Then $\frac{d}{d t}\left[u(t) \times u^{\prime}(t)\right]=$ \qquad .

4．The absolute maximum value of $f(x, y)=x^{2}+2 y^{2}-2 x+3$ subject to the constraint $x^{2}+y^{2} \leq$ 10 is \qquad （4）

5． $\int \frac{t^{2}-t-2}{t^{3}-2 t-4} d t=$ \qquad （5） ．

