一百一十三學年度第二學期微積分會考試題

◎ 單選擇題 (單選十題,每題五分,共五十分,答錯不倒扣)

- (1) Find the area of the region bounded by the graphs of $f(x) = \sqrt[3]{x-1}$ and g(x) = x-1. (A) $\frac{1}{4}$. (B) $\frac{1}{2}$. (C) 1. (D) None of the above.
- (2) Find the volume of the solid generated by revolving the region bounded by the graphs of $y = \sqrt{x}$, $y = -\frac{1}{2}x + 4$, x = 0, and x = 8 about the x-axis.
 - (A) $\frac{32}{3}\pi$. (B) $\frac{56}{3}\pi$. (C) 48π . (D) $\frac{88}{3}\pi$.
- (3) $\int_{3}^{5} \frac{2x}{x^{2} 4x + 4} \, dx = ?$ (A) $2 \ln 3 + \frac{8}{3}$. (B) $2 \ln 3 - \frac{8}{3}$. (C) $-2 \ln 3 + \frac{16}{3}$. (D) $2 \ln 3 + \frac{16}{3}$.
- (4) $\int_0^{\pi} \sin^5 x \, dx =?$ (A) $\frac{16}{15}$. (B) $\frac{8}{15}$. (C) $\frac{28}{15}$. (D) None of the above.
- (5) $\int_0^2 \frac{3}{4x^2 + 5x + 1} dx =?$ (A) $4 \ln 3$. (B) $3 \ln 3$. (C) $2 \ln 3$. (D) $\ln 3$.
- (6) Find the normal component of acceleration for space curve $\mathbf{r}(t) = t\mathbf{i} + t^2\mathbf{j} + \frac{t^2}{2}\mathbf{k}$ at t = 1.
 - (A) $\frac{\sqrt{6}}{6}$. (B) $\frac{\sqrt{30}}{6}$. (C) $\frac{5\sqrt{6}}{6}$. (D) None of the above.
- (7) $\lim_{(x,y)\to(2,1)} \frac{x-y-1}{\sqrt{x-y}-1} =?$ (A) 0. (B) 1. (C) 2. (D) does not exist.
- (8) Find $\frac{\partial w}{\partial s}$ when s = 1 and $t = 2\pi$ for w = xy + yz + xz, where $x = s \cos t$, $y = s \sin t$, and z = t.
 - (A) 2π . (B) -2π . (C) $2 + 2\pi$. (D) $2 2\pi$.
- (9) Find the directional derivative of f(x, y, z) = xy + yz + xz at (1, 2, -1) in the direction of $\mathbf{v} = 2\mathbf{i} + \mathbf{j} \mathbf{k}$.
 - (A) $\frac{5\sqrt{6}}{6}$. (B) $-\frac{5\sqrt{6}}{6}$. (C) $\frac{\sqrt{6}}{6}$. (D) $-\frac{\sqrt{6}}{6}$.

(10) Which of the following points is a saddle point of $f(x, y) = 2xy - \frac{1}{2}(x^4 + y^4) + 1$?

(A) (1, 1, 2). (B) (-1, -1, 2). (C) (0, 0, 1). (D) None of the above.

第1頁/共3頁

一百一十三學年度第二學期微積分會考試題

- 多選擇題(多選五題,每題六分,共三十分。答錯一個選項扣三分,錯兩個選項以上不給分,分數不倒扣)
 - (1) Consider the volumes of the solids generated by revolving the given region about the *x*-axis. Which of the following statements are **true**?
 - (A) If the region is bounded by $y = x^3$, x = 0, and y = 8, then the volume is $\frac{768\pi}{7}$.
 - (B) If the region is bounded by x + y = 4, y = x, and y = 0, then the volume is $\frac{16\pi}{3}$.
 - (C) If the region is bounded by y = 3 x, y = 0, and x = 6, then the volume is 9π .
 - (D) If the region is bounded by $y = 1 \sqrt{x}$, y = x + 1, and y = 0, then the volume is π .
 - (2) Which of the following statements are **true**?

(A)
$$\int_0^{\pi} x \sin 2x \, dx = -\frac{\pi}{2}$$
.
(B) $\int_0^1 x \arcsin x^2 \, dx = \frac{\pi}{4} - 1$.
(C) $\int_0^1 e^x \sin x \, dx = \frac{e(\sin 1 - \cos 1)}{2} - 1$.
(D) $\int_0^{\pi/8} x \sec^2 2x \, dx = \frac{\pi}{16} - \frac{1}{8} \ln 2$.

(3) Which of the following statements are **true**?

(A)
$$\int_0^{\sqrt{3}/2} \frac{1}{(1-x^2)^{5/2}} dx = \sqrt{3}.$$
 (B) $\int_0^{3/5} \sqrt{9-25x^2} dx = \frac{9\pi}{10}.$
(C) $\int_{-\pi/2}^{\pi/2} \frac{\cos x}{1+\sin^2 x} dx = \frac{\pi}{2}.$ (D) $\int_0^\infty \frac{dx}{\sqrt{x}(x+1)} = \pi.$

(4) Consider the function defined by

$$f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0). \end{cases}$$

Which of the following statements are **true**?

- (A) $f_x(0,0) = 1.$ (B) $f_y(0,0) = 0.$ (C) $f_{xy}(0,0) = -1.$ (D) $f_{yx}(0,0) = 1.$
- (5) Consider the ellipsoid S_1 : $x^2 + 2y^2 + 2z^2 = 20$ and the paraboloid S_2 : $x^2 + y^2 + z = 4$. Which of the following statements are **true**?
 - (A) An equation of the tangent plane of S_1 at (2, 2, 2) is x + 2y + 2z = 10.
 - (B) The angle of inclination of the tangent plane to S_1 at (0, 1, 3) is $\arccos \frac{3}{\sqrt{10}}$.
 - (C) A set of symmetric equations for the normal line of S_2 at (1,1,2) is x-1 = y-1 = z-2.
 - (D) A set of parametric equations for the tangent line to the curve of intersection of S_1 and S_2 at (0, 1, 3) is x = t, y = 1, and z = 3.

一百一十三學年度第二學期微積分會考試題

◎ 填空題 (五題,每題四分,共二十分,答錯不倒扣)

- (1) The arc length of the graph of $y = \frac{x^3}{6} + \frac{1}{2x}$ on the interval $\left[\frac{1}{2}, 2\right]$ is _____.
- (2) Find $\int \frac{x}{(a+bx)^2} dx =$ _____.
- (3) Let **r** be a differentiable vector-valued functions of t. Find $\frac{d}{dt} || \mathbf{r}(t) || =$ _____.
- (4) The minimum value of $f(x, y) = 3x^2 + 2y^2 4y$ over the region in the xy-plane bounded by the graphs of $y = x^2$ and y = 4 is _____.
- (5) Assume that x, y, and z are nonnegative. The minimum value of $f(x, y, z) = x^2 + y^2 + z^2$ subject to the constraints x + 2z = 6 and x + y = 12 is _____.