一百一十二學年度第二學期微積分會考試題

1. Find the area of the region between the graphs of $f(x) = 3x^3 - x^2 - 10x$, and $g(x) = 2x - x^2$.

一、單選擇題 (單選十題,每題五分,共五十分,答錯不倒扣)

	(A) 24;	(B) 12;	(C) 6;	(D) 0.	
2. Evaluate $\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^4+y^2} =$					
	(A) 0;	(B) 1;	(C) 0.5;	(D) not exist.	
3.	Let $f(x,y) = -x^3 + 4xy - 2y^2 + 1$. Which one of the following statements is True ?				
	(A) f has a relative mini	mum at $(\frac{4}{3}, \frac{4}{3})$;	(B) f has a relative max	imum at (0, 0);	
	(C) f has at least one sad	ddle point;	(D) f has a critical point	at $(-1, \frac{4}{3})$.	
4.	Let $f(x,y) = (x^2 + 4y^2)e^{1-x^2-y^2}$. How many saddle points does f possess?				
	(A) 4;	(B) 3;	(C) 2;	(D) 1.	
5.	Evaluate $\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} dx =$				
	(A) 0;	(B) π;	(C) $\frac{\pi}{2}$;	(D) None of the above.	
6.	. Evaluate $\lim_{x\to 0^+} (\sin x)^x =$				
	(A) e^{-1} ;	(B) e;	(C) 1;	(D) 0.	
7. Find the arc length of the space curve $r(t) = \langle 2sint, 5t, 2cost \rangle$ on the interval				al $[0,\pi]$.	
	(A) $\frac{33\pi}{4}$;	(B) $\frac{65\pi}{4}$;	(C) $\sqrt{29}$;	(D) $\sqrt{29}\pi$.	
8.	Evaluate $\int_0^{\pi/4} 6 \tan^3 x dx =$				
	(A) $3(1 - ln2)$;	(B) 3;	(C) $\frac{\pi}{4} + 1$;	(D) $\frac{\pi}{4} - 1$.	
9.	Let $w = 2xy$ with $x = s^2 + t^2$ and $y = s/t$. Find $\frac{\partial w}{\partial s} =$				
	(A) $\frac{6s^2+2t^2}{t}$;	(B) $\frac{6s^2-2t^2}{t}$;	(C) $\frac{2st^2-2s^3}{t^2}$;	(D) $\frac{2st^2+2s^3}{t^2}$.	
10	0. Find the directional derivative of $f(x,y) = x^2 \sin(2y)$ at $(1,\pi/2)$ in the direction of $\mathbf{v} = 3\mathbf{i} - 4\mathbf{j}$.				
	(A) $\frac{3}{5}$;	(B) $\frac{8}{5}$;	(C) $\frac{14}{25}$;	(D) $\frac{6}{25}$.	

二、多選擇題 (多選五題,每題六分,共三十分。答錯一個選項扣三分,錯兩個選項以上不給分, 分數不倒扣)
11. Consider the volumes of the solids generated by revolving the region bounded by $y = 0$, $x = 0$, $x = 2$ and $y = x^3$ about the given lines. Which of the following statements are True ?
(A) The x-axis. Then volume is $\frac{128\pi}{7}$;
(B) The y-axis. Then volume is $\frac{32\pi}{5}$
(C) The line $x = 3$. Then volume is $\frac{56\pi}{5}$;
(D) The y-axis. Then volume is $\frac{16\pi}{5}$.
12. Let $f(x,y) = \begin{cases} \sin(xy)/(xy) & \text{if } xy \neq 0; \\ 1 & \text{if } xy = 0. \end{cases}$ Which of the following statements are True ?
(A) f is not continuous at $(3,0)$;

13. Let function $f(x,y) = 3 - \frac{x}{3} - \frac{y}{2}$ and point P = (3,2). Which of the following statements are **True**?

(C) 1;

(D) -2.

(B) The directional derivative of f at P in the direction $\langle -3, -4 \rangle$ is $\frac{3}{5}$;

(C) The minimum rate of change of f at P occurs in the direction $\frac{1}{\sqrt{13}}\langle -2, -3 \rangle$;

(A) If f(x, y) is differentiable, then $D_{\mathbf{u}}f(x, y) = \nabla f(x, y) \cdot \mathbf{u}$ for any unit vector \mathbf{u} ;

(B) $f_x(1,0) = 0$; (C) $f_y(0,2) = 0$;

(A) -4;

(D) f has no absolute minimum.

(A) The gradient of f at P is $\langle \frac{-1}{3}, \frac{1}{2} \rangle$;

(D) The maximum rate of change of f at P is $\frac{\sqrt{13}}{6}$.

Which of the following statements are **Not True**?

(B) If f(x, y) is differentiable, then $\nabla f(x, y)$ exists;

(C) If $\nabla f(a, b)$ exists, then f(x, y) is continuous at (a, b);

(D) If f(x, y) is continuous at (0,0), then $\nabla f(0,0)$ exists.

14. For what values of c does the integral $\int_{e}^{\infty} e^{clnx} dx$ converge?

(B) ln(2);

三、填空題 (五題,每題四分,共二十分,答錯不倒扣)

1. Let
$$f(x,y) = \frac{xy}{\sqrt{x^2 + y^2}}$$
. Then $\frac{3f_x(3,4) + 4f_y(3,4)}{f(3,4)} = \underline{\qquad (1)}$.

- 3. The absolute maximum value of $f(x, y) = x^2 + y^2 4xy + 3$ subject to the constraint $x^2 + y^2 = 1$ is ____(3)___.
- 4. Let $f(x) = \frac{8x^3 + 13x}{(x^2 + 2)^2} = \frac{Ax + B}{x^2 + 2} + \frac{Cx + D}{(x^2 + 2)^2}$. Then $A + B + C + D = \underline{\qquad (4)}$. In addition, $\int_0^1 \frac{8x^3 + 13x}{(x^2 + 2)^2} dx = \underline{\qquad (5)}$.